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Abstract. In this paper we present a new technique for performance modelling
and a tool supporting this approach. Performance Evaluation Process Algebra
(PEPA) [1] is an algebraic language which can be used to build models of computer
systems which capture information about the performance of the system. The
PEPA language serves two purposes as a formal description language for computer
system models. The performance-related information in the model may be used
to predict the performance of the system whereas the behavioural information in
the model may be exploited when reasoning about the functional behaviour of the
system (e.g. when finding deadlocks or when exhibiting equivalences between
sub-components). In this paper we concentrate on the performance aspects of the
language.
A method of reasoningaboutPEPA models proceedsby considering the derivation
graph obtained from the model using the underlying operational semantics of the
PEPA language. The derivation graph is systematically reduced to a form where it
can be treated as the state transition diagram of the underlying stochastic (in fact,
Markovian) process. From this can be obtained the infinitesimal generator matrix
of the Markov process. A steady state probability distribution for the system can
then be obtained, if it exists.
We have implemented a prototype tool which supports this methodology from the
initial checking of the well-formedness of the PEPA model through the creation of
the state transition diagrams to the calculation of performance measures based on
the infinitesimal generator matrix. The tool is implemented in Standard ML [2]
and provides an interface to the Maple Symbolic Algebra package [3] for the
solution of matrix equations.

1 Introduction

Formal descriptions of computer systems are amenable to analysis by a range of formal
techniques. At the simplest level, they may be checked for conformance with the
syntax, grammar and type-correctness rules of the formal language used. More advanced
analysis may involve deriving properties of a system from its description: either by
deduction or by calculation. For concurrent systems modelled by an algebraic descrip-
tion, the properties which may be checked include freedom from deadlock and algebraic
equivalence under observation with a simpler description which serves as a specifica-
tion of the system. When the algebraic description is enhanced with information about
the system’s expected performance—as in PEPA—still further properties can be calcu-
lated. These include steady-state probabilities and rewards which may be used to derive
performance measures.
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The goal of the work described here is to provide a workbench for a designer of a
computer system who is working from an initial PEPA model. As with other languages
based on algebra and processes, e.g. CCS [4], PEPA is a parsimonious language which
provides the essential, simple tools for system description. The formality and succinct-
ness of the language have enabled the authors to design and build a workbench which
assists with checking and reasoning about PEPA descriptions. Use of PEPA and the
workbench is illustrated by an example taken from the area of communication networks.

2 The PEPA Language

The motivation for process algebra-based techniques for the quantitative analysis of
computer systems have been presented in detail elsewhere [5, 6]. Some of the advantages
of such an approach are:

– The system is represented as a collection of active agents who cooperate to achieve
the behaviour of the system. This cooperator paradigm is particularly apt for
modelling many modern computer systems.

– Compositional reasoning is an integral part of the modelling language.
– The formal definition clarifies the task of providing tools for model manipulation,

simplification and analysis.
– Process algebra has growing importance as a design methodology [7, 8] and so this

approach offers the possibility of integrating performance analysis into the system
design process.

From a performance point of view, process algebras, such as CCS, lack essential,
quantifiable information about time and uncertainty. Timed extensions of some process
algebras have been proposed [9, 10, 11, 12] but these make a distinction between time
progressing and computation progressing. PEPA, and TIPP, developed at Erlangen, take
an alternative approach—time is incorporated into the algebra by associating a random
variable, representing duration, with each activity1. We assume a race condition between
simultaneously enabled activities. Thus, as in probabilistic process algebras, we replace
the nondeterministic branching by probabilistic branching, and the timing behaviour of
the system is captured. This is analogous to the association of a duration with the firing
of a timed transition in a generalised stochastic Petri net [13].

It was important when designing the PEPA language to retain the key features of a
process algebra which had motivated the approach: compositionality,parsimony, and the
existence of a formal definition. However, it was also necessary to incorporate features
to make the language suitable for capturing the performance-related information about
the system. This additional information can be added as an annotation to an existing
model or design.1 ‘Activity’ is used instead of the usual process algebra ‘action’ to distinguish between timed and

instantaneous behaviour respectively.
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2.1 PEPA Terminology

In PEPA a system is described as an interaction of components and these components
engage, either individually or cooperatively, in activities. The components will corres-
pond to identifiable substructures in the system, or rôles in the behaviour of the system.
They represent the active units within a system; the activities capture the actions of
those units. For example, a queue may be considered to consist of an arrival component
and a service component which interact to form the behaviour of the queue.

A component may be atomic or may itself be composed of components. Thus the
queue in the above example may be considered to be a component. Each component
has a behaviour which is defined by the activities in which it can engage. Actions of
the queue might be accept, when a customer enters the queue, service, or loss, when a
customer is turned away because of a full buffer.

Each activity has an action type. We assume that each discrete action within a system
has a unique type and there is a countable set, A, of all possible such types. The action
types of a PEPA term correspond to the actions of the system being modelled. There are
situationswhen a system is carrying out some action (or sequence of actions) the identity
of which is unknown or unimportant. To capture these situations there is a distinguished
action type, � , which can be regarded as the unknown type. Activities of this type are
private to the component in which they occur.

Every activity in PEPA has an associated duration which is a random variable with
an exponential distribution. Since an exponential distribution is uniquely determined by
its parameter, the duration of an activity may be represented by a single real number
parameter. This parameter is referred to as the activity rate (or simply rate) of the
activity; it may be any positive real number, or the distinguished symbol >, which
should be read as “unspecified”.

An M=M=1=N=N queue in which the arrival process is suspended when the buffer
is full, is represented as follows:Arrival0 def= (accept; �):Arrival1

...
...Arrivali def= (accept; �):Arrivali+1 + (serve;>):Arrivali�1 1 � i � N � 1

...
...ArrivalN def= (serve;>):ArrivalN�1Server def= (serve; �):ServerQueue0 def= Arrival0 BCfservegServer

Each activity, a, is defined as a pair (�; r) where � 2 A is the action type and r is
the activity rate. It follows that there is a set of activities,Act � A�R+, whereR+ is
the set of positive real numbers together with the symbol >.

When enabled, an activity a = (�; r), will delay for a period determined by its
associated distribution, denoted Fa(t) ( = 1 � e�rt). We can think of this as the
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activity setting a timer whenever it becomes enabled. The time allocated to the timer
is determined by the rate of the activity. If several activities are enabled at the same
time each will have its own associated timer. When the first timer finishes that activity
takes place—the activity is said to complete or succeed. This means that the activity is
considered to “happen”: an external observer will witness the event of an activity of
type �. An activity may be preempted, or aborted, if another one completes first.

2.2 The Syntax and Semantics of PEPA

Components and activities are the primitives of the language PEPA; the language also
provides a small set of combinators. As explained in the previous section the behaviour
of a component is characterised by its activities. However, this behaviour may be
influenced by the environment in which the component is placed. The combinators of
the language allow expressions, or terms, to be constructed defining the activities which
components may undertake and the interactions between them.

The syntax for terms in PEPA is defined as follows:P ::= (�; r):P j P BCL Q j P + Q j P=L j X j A
Prefix: (�; r):P Prefix is the basic mechanism by which the behaviours of components
are constructed. The component (�; r):P carries out activity (�; r), which has action
type � and a duration which is exponentially distributed with parameter r (mean 1=r).
The time taken for the activity to complete will be some�t, drawn from the distribution.
The component subsequentlybehaves as componentP . When a = (�; r) the component(�; r):P may be written as a:P .

It is assumed that there is always an implicit resource, some underlying resource
facilitating the activities of the component which is not modelled explicitly. Thus the
time elapsed before activity completion represents use of the resource by the component
enabling the activity. For example, this resource might be processor time or CPU cycles
within a processor, depending on the system and the level at which the modelling takes
place.

Choice: P + Q The component P + Q represents a system which may behave either
as P or as Q. P +Q enables all the current activities of P and all the current activities
of Q. Whichever enabled activity completes it must clearly belong to either P or Q.
In this way the first activity to complete distinguishes one of the components. The
other component of the choice is discarded. The continuous nature of the probability
distributions ensures that the probability of P and Q both completing an activity at the
same time is zero. The system will subsequently behave as P 0 orQ0 respectively, whereP 0 is the component which results from P completing the activity, and similarlyQ0.

There is an underlying assumption that P andQ are competing for the same implicit
resource. Thus the choice combinator represents competition between components.

Cooperation: P BCL Q The cooperation combinator is in fact an indexed family of
combinators, one for each possible set L of action types. The set L, the coopera-
tion set, defines the action types on which the components P and Q must synchronise
or cooperate, i.e. it determines the interaction between the components.
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All activities of P and Q which have types which do not occur in L will proceed
unaffected. These are termed individual activities. In contrast shared activities, activities
whose type does occur inL, will only be enabled inP BCL Qwhen they are enabled in bothP and Q. Thus one component may become blocked, waiting for the other component
to be ready to participate. These activities represent situations in the system when the
components need to work together to achieve an action. In general both components
will need to complete some work, corresponding to their own representation of the
action. Thus a new shared activity is formed by the cooperation P BCL Q, replacing the
individual activities of P and Q. This activity will have the same action type as the two
contributing activities and a rate reflecting the rate of the slower participant.

If an activity has an unspecified rate in a component, the component is passive with
respect to that action type. This means that although the cooperation of the component
may be required to achieve an activity of that type the component does not contribute
to the work involved. An example might be the rôle of a channel in a message passing
system: the cooperation of the channel is essential if a transfer is to take place but
the transfer involves no work on the part of the channel. This may be regarded as one
component coopting another.

In contrast to choice, it is assumed that P and Q each have their own implicit
resource. Activities with action types in the setL are assumed to require the simultaneous
involvement of both components, both resources. The unknown action type, � , may not
appear in any cooperation set.

Hiding: P=L The component behaves as P except that any activities of types within
the set L are hidden, meaning that their type is not witnessed upon completion. Instead
they appear as the unknown type � and can be regarded as an internal delay by the
component.

Hiding does not have any effect upon the activities a component may engage in
individually, but a hidden activity is witnessed only as a delay of the unknown type,� . The duration of an activity is unaffected if it is hidden. However, a hidden activity
cannot be carried out in cooperation with any other component. In effect the action
type of a hidden activity is no longer externally accessible, to an observer or to another
component.

Variable:X IfE is a component expression which contains a variableX, thenEfP=Xg
denotes the component formed when every occurrence of X in E is replaced by the
component P . More generally, an indexed set of variables, ~X , may be replaced by an
indexed set of components ~P , as in Ef ~P= ~Xg.

Constant: A def= P We assume that there is a countable set of constants. Constants are
components whose meaning is given by a defining equation such as A def= P which
gives the constant A the behaviour of the component P . This is how we assign names
to components (behaviours).

The semantics of the language, presented in structured operational semantics style,
are shown in Figure 1. The transitional semantics over PEPA is then given by the least
multi-relation�! � PEPA�Act � PEPA satisfying the rules.
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Prefix (�; r):E (�;r)���! E
CooperationE (�;r)���! E0E BCL F (�;r)���! E0 BCL F (� =2 L) F (�;r)���! F 0E BCL F (�;r)���! E BCL F 0 (� =2 L)E (�;r1)���! E0 F (�;r2)���! F 0E BCL F (�;R)���! E0 BCL F 0 (� 2 L) where R = r1r�(E) r2r�(F ) min(r�(E); r�(F ))

and r�(E) is the apparent rate of � in E
Choice E (�;r)���! E0E + F (�;r)���! E0 F (�;r)���! F 0E + F (�;r)���! F 0
Hiding E (�;r)���! E0E=L (�;r)���! E0=L (� =2 L) E (�;r)���! E0E=L (�;r)���! E0=L (� 2 L)
Constant E (�;r)�! E0A (�;r)�! E0 (A def= E)

Fig. 1. Operational Semantics of PEPA

When the set L is empty, BCL has the effect of parallel composition, allowing
components to proceed concurrently without any interaction between them. We use the
more concise notation P k Q (the parallel combinator) to represent P BC; Q.

Execution Strategies and the Exponential Distribution The race condition governs
the dynamic behaviour of a model whenever more than one activity is enabled. This
means that we may think of all the activities attempting to proceed but only the ‘fastest’
succeeding. Of course, which activity is ‘fastest’ on successive occasions will vary
due to the nature of the random variables determining the durations of activities. The
probability that a particular activity completes will be given by the ratio of the activity
rate of that activity to the sum of the activity rates of all the enabled activities.

We assume that the introduction of cooperation between two components implies
that in general they are independent and running on separate resources. Thus we can
think of their individual activities as interleaving. On the other hand, when there is a
choice between components we assume that they are competing for the same under-
lying resource and that in fact only one of them gains the use of that resource. Thus
we have two different preemption scenarios: preemptive-resume for cooperation and
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preemptive-restart with resampling for choice. However, we take advantage of the
memoryless property of the exponential distribution which makes the two equivalent
and always assume a preemptive-restart policy (with resampling). This allows us to
formulate Expansion Laws of the form shown below: this would not be possible if
another distribution were associated with activity durations as in some versions of TIPP
[14].

Expansion Law Let P � P1 BCL P2. ThenP =Xf(�; r):(P 01 BCL P2) : P1 (�;r)�! P 01; � =2 Lg+Xf(�; r):(P1 BCL P 02) : P2 (�;r)�! P 02; � =2 Lg+Xf(�; r):(P 01 BCL P 02) : P1 (�;r1)�! P 01; P2 (�;r2)�! P 02; � 2 Lg
Recent work on TIPP [5] has concentrated on the subset of the language in which all

activity durations are exponentially distributed. The major differences between PEPA
and this subset are in the definition of the cooperation or parallel composition, and
more importantly, the choice of a multi-relation, rather than a relation, to capture the
operational semantics of the language.

2.3 Generating and Solving the Underlying Markov Process

For any PEPA model we can define a multigraph—the derivation graph—based on the
operational semantics. This is a graph in which language terms form the nodes and the
arcs represent the possible transitions (activities) between them; it is a multigraph since
we distinguish between different instances of the same activity. This derivation graph
provides a useful way to reason about the behaviour of a model. Moreover it is used to
generate the stochastic process underlying any PEPA model. Each node of the derivation
graph is taken to be a state in the stochastic process and the transition rate between states
is the sum of the rates shown on arcs connecting the nodes in the multigraph. This is
analogous to the use of the reachability graph in stochastic extensions of Petri nets such
as GSPN [13]. For the M=M=1=N=N queue considered earlier the derivation graph is
shown in Figure 2.Queue0 Queue1� �� �6(accept; �) ?(serve; �) �� -(accept; �)6(serve; �) � � � �(accept; �) �(serve; �)� ?QueueN�1� �� �?(accept; �)6 (serve; �)QueueN
Fig. 2. The derivation graph for an M=M=1=N=N queue
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Theorem 2.1 In a PEPA model if we define the stochastic process X(t), such thatX(t) = Ci indicates that the system behaves as component Ci at time t, then X(t) is a
Markov process.

We can construct transition rates q(Ci; Cj) between components of the system as
follows:q(Ci; Cj) = Xa2Act(CijCj)ra where Act(Ci j Cj) = fj a 2 Act(Ci) j Ci a�! Cj jg
Typically this multiset will only contain one element. The q(Ci; Cj), or qij, are the
off-diagonal elements of the infinitesimal generator matrix of the Markov process, Q.
Diagonal elements are formed as the negative sum of the non-diagonal elements of each
row, i.e. qii = �Pj 6=i qij.

The conditions which must be satisfied in order to guarantee the existence of an
equilibrium distribution for a Markov process, and for this to be the same as the limiting
distribution, are well-known—a stationary or equilibrium probability distribution, �,
exists for every time homogeneous irreducible Markov process whose states are all
positive-recurrent.

All PEPA models are time-homogeneous since all activities are time-homogeneous:
the rate and type of activities enabled by a component are independent of time. The other
conditions, irreducibility and positive-recurrent states, are easily expressed in terms of
the derivation graph of the PEPA model. We only consider PEPA models with a finite
number of states so if the model is irreducible then all states must be positive-recurrent
i.e. the derivation graph is strongly connected. In terms of the PEPA model this means
that all behaviours of the system must be recurrent; in particular, for every choice,
whichever path is chosen it must eventually return to the point where the choice can be
made again, possibly with a different outcome.

It is interesting to note that deadlock and livelock in the process algebra model will
correspond to an absorbing state, or set of states respectively, in the underlying Markov
process. However, in this paper, we restrict ourselves to models without such features;
for more details see [1].

Solving the Markov Process For finite state PEPA models whose derivation graph is
strongly connected, (ergodic Markov process) the equilibrium distributionof the model,�, is found by solving the matrix equation�Q = 0 (2.1)

subject to the normalisation conditionX�(Ci) = 1 (2.2)

The computer algebra package Maple2 [3] is used to find �. The equations 2.1 and 2.2
are combined by replacing a column of Q by a column of 1s and placing a 1 in the
corresponding row of 0. Moreover, since Maple deals with row vectors instead of
column vectors, this modifiedQ is transposed.2 Maple is a registered trademark of Waterloo Maple Software.
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Reward Structures and Derivation of Performance Measures Performance meas-
ures are derived by defining a reward structure over a model in a similar way to the use of
reward structures in [15]. Reward structures have generally been explicitly treated only
in the context of performability modelling, where reliability and performance aspects of
a system are considered together. However, such structures may also be used to define
performance measures.

As the emphasis in a PEPA model is on the behaviour of the system in terms of
activities, rather than states, we associate rewards with certain activities within the
system. The reward associated with a derivative (and underlying state), is then the sum
of the rewards attached to activities enabled by the derivative. The performance measure
is then defined as the total reward based on the steady state probability distribution, i.e.
if �i is the reward associated with derivative Ci, and �(�) is the steady state probability
distribution of the underlying Markov process, then the total reward R isR =Xi �i �(Ci)

In this way, as in Stochastic Reward Networks [15], the rewards can be defined at
the level of the PEPA model, rather than at the level of the underlying Markov process.

3 The PEPA Workbench

The design philosophy behind the PEPA workbench was to provide a set of simple
tools to allow a skilled user of the PEPA language to delegate to machine assistance
some of the routine tasks in checking PEPA descriptions and performing calculations
of transition graphs and rewards. The Standard ML language was chosen as the imple-
mentation language for the workbench because it had previously been successfully used
for the implementation of the Concurrency Workbench (for CCS and TCCS) [16] and
choosing the same language may allow us to re-use some of the Concurrency Work-
bench code. Standard ML has also been used for theorem provers and other software
tools locally since it provides high-level functionality via higher-order polymorphic
functions. However, these functional language features are smoothly integrated with
imperative assignment which allows the convenient construction of efficient programs.
Standard ML is a strongly-typed, secure programming language and its use gives us
confidence in the correctness of the workbench.

3.1 The Workbench Implementation

The workbench takes the form of a Standard ML image with the functionality imple-
mented as Standard ML functions which have been pre-compiled. This provides a
convenient and secure mechanism for exporting the PEPA workbench while also
conveniently providinga powerful command line interface in the Standard ML language
itself. A screen dump showing the workbench being accessed via the Lemacs editor is
given in Figure 3. Some simple Emacs Lisp routines provide pull-downmenus with sub-
menus for issuing workbench commands. The benefits of the design of Standard ML
are inherited by this process. For example, PEPA descriptions can easily be stored as
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Fig. 3. The PEPA workbench

Standard ML values in the Standard ML environment and moribund values will then
be taken away by the built-in garbage collector of the system, freeing the user of the
workbench from the problem of managing and conserving space while generating large
graphs. As a further example, it is easy to interrupt a PEPA workbench session at any
time and still be able to return to it later simply by exporting the Standard ML image. No
re-compilation of the PEPA description will be necessary upon returning to the session.

3.2 The PEPA Parser

PEPA is a mathematical notation and in designing a parser for the notation it was
necessary to decide whether to use an extended character set for input or to decide to
devise a replacement concrete syntax for the mathematical symbols. The second option
was chosen. Distinct precedences were assigned to the connectives: the hiding operator
was given highest precedence with prefix next, followed by co-operation. The choice
operator was given lowest precedence. Parentheses were provided to allow the user to
enforce the alternative parsing. The language does not have a local block construct so
the processing of names is simplified. Separate name spaces are maintained for activities
and components. Rates may either be entered as symbolic values or as numeric literals.

Notationally, even with the above additions, PEPA is certainly not a large language.
For this reason, we decided not to use the Standard ML versions of the well-known
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Lex and Yacc tools to generate a lexical analyser and a parser. This decision has a
favourable consequence since using these tools would mean that they would be added
to the exported image of the workbench, making it larger than really necessary. Instead,
a Burge-style parser [17] has been produced for the PEPA language. This is a compact,
elegant functional program which uses infix function symbols to encode the operators
which combine productions in a formal description notation such as BNF. This provides
a simple correspondence with the grammar for the language which makes the parser both
easy to construct and easy to modify. Coding a Burge-style parser elegantly requires the
language to provide polymorphic functions as first-class objects, which Standard ML
does. In general, these parsers are not as efficient as Yacc-generated parsers but the
efficiency of the PEPA parser is perfectly acceptable.

3.3 Computing the Transition Graph

The possible transitions of a PEPA component are obtained by following the transitions
given in the operational semantic rules in Figure 1. The built-inexhaustiveness checking
of the pattern-matching process deployed in this function checks that all program forms
are handled by the function. Initially, the semantic rules were encoded in a naı̈ve
functional prototype implementation. This had the virtue of being obviously faithful
to the language definition as given by the operational semantics but, as expected,
this implementation was intolerably inefficient. Even when a sophisticated optimizing
compiler was used to compile the workbench, small PEPA descriptions executed on a
SparcStation 10/52 with 160Mb of memory had a running time of several hours. For
some mid-sized PEPA descriptions, this prototypewould exhaust the machine’s memory
and fail without delivering the transition graph.

After some study and analysis, a minor modification was made to produce the
next version of the workbench. This used the imperative features of Standard ML to
avoid some redundant re-computation which was being performed by the functional
prototype. This modification was modest enough that we may be sure it did not alter the
program’s output from the results which would have been obtained from the prototype,
thus maintaining our confidence in its correctness. However, now the workbench will
calculate the transition graphs of mid-sized PEPA descriptions in a few seconds when
running on a more modest SparcStation ELC with only 16Mb of memory!

This decrease in run time makes possible the interactive form of experimentation
which we hoped that the workbench would provide, making it a considerably more
useful tool. In addition, a decrease in memory utilization was achieved, facilitating
the analysis of models greater than the largest which could have been handled by the
functional prototype of the workbench.

3.4 Interfacing with Maple

The matrix manipulation routines which are required to solve the generator matrix either
symbolically or numerically are provided by the Maple computer algebra package. It was
judged to be simpler to use the existing Maple routines rather than re-implement these
in Standard ML. Thus we have implemented the functionality to allow a workbench
user to call Maple from the workbench. This enables a workbench user to pass PEPA
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values between Standard ML and Maple, manipulating them using whichever system is
more useful for the processing task at hand.

Using the derivation graph the workbench specifies entries for the generator matrix
in Maple syntax. Thus, results from the workbench can be written as Maple files and
loaded into Maple. These files contain the results of the workbench analysis of the PEPA
model and it is important that the PEPA user should be able to read these files in order
to be able to check that the PEPA model has the behaviour which was expected. For
this reason, the Maple input file is annotated with PEPA transition notation explaining
the significance of the transition in the user’s terms. These are written using Maple’s
comment notation and are therefore ignored by Maple.

4 Investigating a Simple MSMQ System

We illustrate the use of PEPA as a modelling paradigm, and the workbench, in an
example taken from the study of communication systems. Polling systems have been
used extensively over the last twenty years to investigate many computer and commu-
nication systems [18]. In these systems a single server circulates amongst a number of
queues providing service according to a predetermined discipline. Extracting perform-
ance measures for these systems is non-trivial since the congestion at any one queue is
dependent on the congestion at the other queues in the system. Recently these systems
have been extended by the introduction of one or more additional servers to form
multi-server multi-queue (MSMQ) systems [19]. MSMQ systems have been used to
model applications in which multiple resources are shared among several users, possibly
with differing requirements. In particular these models have been applied to local area
network architectures, with ring topologies and scheduled access, in which more than
one node may transmit simultaneously. For example, slotted rings and rings with multiple
tokens are modelled as MSMQ systems by Yang et al. in [20].

Exact solutions for MSMQ systems have only recently been provided by Ajmone
Marsan et al., [19]. In this paper we extend the class of asymmetric models considered
by those authors. In [19] they consider a system of N nodes in which one node has
capacity K and arrival rate K� while all other nodes have capacity 1 and arrival rate�. This represents a network in which one node has high traffic and the other nodes
have light traffic, such as a LAN connecting several diskless workstations and one file
server. It was shown that the presence of the heavily loaded node did not greatly affect
the mean waiting time of customers at lightly loaded nodes. Here we consider a system
of N nodes each with capacity 1 and arrival rate � but with customers at one node
placing a larger service requirement on the server. We investigate the effect of this on
the average waiting time of customers at the other nodes.

4.1 Model

We consider an MSMQ system in which there are four nodes, and two servers. Service
is limited, meaning that each server serves at most one customer at each visit to each
node. This corresponds to the release-by-source access mechanism for slotted rings.
Moreover, only one server may service a node at any given time. Buffering is restricted:
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a customer occupies a place in the buffer until its service is complete, and the arrival
process is suspended whenever the buffer is full. We assume that the arrival process at
each node is Poisson with parameter �, and that normal service, heavy service and walk
times in the system are exponentially distributed with rates �, m� and ! respectively.

The PEPA model of this system is shown in Figure 4. The components of the model
of the system are the servers, and the nodes. Since the structure of the system is simple
we model each node as a single entity.Nodej0 def= (in; �):Nodej1 + (walk Ej ;>):Nodej0 for 1 � j � NNodej1 def= (walk Fj; rN ):Nodej2Nodej2 def= (servej; �j):Nodej0 + (walk Ej ;>):Nodej2

where �j = �� if j = 1m� if 1 < j � NSj def= (walk Fj; !):(servej;>):Sj�1 + (walk Ej ; !):Sj�1
where j � 1 = 1 when j = NMSMQ def= (Node10 k Node20 k Node30 k Node40) BCfwalk Fj ;walk Ej;servejg(S1 k S1) for 1 � j � 4

Fig. 4. PEPA model of an asymmetric MSMQ system with restricted bufferingSj denotes a server ready to approach the jth node in the system. There are two
possibilities: either it walks to the node and finds it empty or occupied, or it walks to
the node and finds a customer requiring service and no other server currently present.
These two possibilities are represented by the two activities walk Ej and walk Fj
respectively. After the former activity the server is ready to approach the next node, but
after the latter it must remain at Nodej until the service is complete. The rate at which
service occurs is determined by the node. All the nodes appear alike to the server but
we must distinguish between them in order to maintain the cyclic scheduling. Similarly,
each of the servers appear alike to the nodes. The two servers do not directly interact
with each other so they may be represented as SjkSj or SjkSk.

Each node,Nodej has three distinguishable states depending on whether the buffer is
empty or full, and whether a full buffer is occupied by a server. These are represented by
the three derivatives of the node component, Nodej0, Nodej1 and Nodej2. An arrival
may occur only when the node is empty and this is represented by an in activity with rate�. The node will enable a walk to the node without engaging the server, walk E, when
it is empty (Nodej0) or when it is already occupied by a server (Nodej2). It will enable
a walk and engage the server, walk F , whenever the buffer is full but there is no server
currently present (Nodej1). In each case the rate of the walk activity is determined by
the server. Although the nodes are not passive with respect to the walk F action type,
we assume that the corresponding activity rate rN is greater than !. When the buffer
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of the node is full and a server is present a serve activity will be enabled with a rate
determined by the node. This activity must be completed before arrivals are resumed at
the node.

The system has four nodes, so that when the server leaves Node4 it walks on toNode1. The nodes are independent, but must cooperate with a server to complete awalk E, walk F or serve activity.

4.2 Solution

The values which were assigned to the parameters are shown in Table 1. The effect
of varying the service rate of customers at Node1 was investigated with respect to the
mean customer waiting time at the other nodes. The model has 560 states and 2064
transitions.

in servej (j = 2; 3; 4) servej (j = 1) walk E walk F� � m� ! !
0.1 1 1 � 1=m � 5 10 10

Table 1. Parameter values assigned to the PEPA MSMQ model

For each node we calculate the mean customer waiting time, Wj , by applying
Little’s Law to the node. The mean number of customers present at the node, Nj , is
found by noting that there is exactly one customer present whenever the activity in is
not enabled. Thus if we associate a reward of 1 with the activity in we can calculate the
reward Rinj . This has the effect of associating a reward of 1 with all states in whichNodej is unoccupied. Then Nj = 1�Rinj :
The throughput at the node, Xj , is found as the throughput of the activity servej ,
calculated by associating a reward of �j with the activity. Little’s Law calculates the
mean time spent in the node by a customer so the mean customer waiting time, Wj is:Wj = NjXj � 1�j (4.3)

The mean customer waiting time at each of the nodes, as the service demand at Node1
increases, is shown in the graph shown in Figure 5. The expected waiting time for
customers at Node1 increases only slightly as the service demand at that node is
increases. However at the other nodes the expected customer waiting time grows as
the service demand at the Node1 increases. It is interesting to note that this rate of
growth is slightly slower at the node immediately downstream from the distinguished
node (Node2) as it is able to take advantage of the second server overtaking the server
occupied at Node1.
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Fig. 5. A plot of mean customer waiting times

Note that using this approach asymmetric systems are handled as easily as symmetric
ones. As with GSPNs the major problem of the approach is state space explosion.
However, unlike GSPNs, the formal nature of the language makes it easy to detect
symmetries within the system and to take advantage of these to simplify the model. A
full description of these simplification techniques is beyond the scope of this paper but
details can be found in [6].

5 Future Extensions

Although it would be possible to extend the PEPA language to include more combinators,
we are not tempted to do this. The economy of PEPA makes reasoning about PEPA
descriptions easier and made it straightforward for us to implement the workbench.

Some features could be added to the input language of the workbench to make the
concrete syntax version of PEPA models shorter. These would include providingan array
mechanism to allow the convenient description of families of related components. This
feature is already present in the PEPA mathematical notation in the use of subscripting
to denote component families.

More interesting planned extensions to the workbench include the addition of
increased support for the experimentation process, allowing the workbench to take
advantage of Maple’s ability to solve global balance equations symbolically. In part
this will rely on implementing an equivalence checker for PEPA components. This
algebraic equivalence (known as bisimulation) will enable the user of the workbench
to solve more complex models by replacing complex components with simpler ones
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which are algebraically equivalent. Finally, we intend to investigate the use of alternative
algorithms for the balance equations to replace the Gaussian elimination with partial
pivoting currently used.
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